

# Seismic Simulations using the ExaHyPE Engine

Leonhard Rannabauer
Anne Reinarz
Technical University of Munich
Durham University



## The ExaHyPE Project

- EU Horizon 2020 project in the FETHPC call "Towards Exascale High Performance Computing" (New mathematical and algorithmic approaches)
- ExaHyPE has received followup funding through ChEESE The main objective of ChEESE is to establish a new Center of Excellence (CoE) in the domain of Solid Earth (SE) targeting the preparation of 10 Community flagship European codes for the upcoming pre-Exascale (2020) and Exascale (2022) supercomputers.



## People

- PI: Michael Bader
- Instructors: Anne Reinarz, Jean-Matthieu Gallard, Leonhard Rannabauer, Philipp Samfass, Lukas Krenz









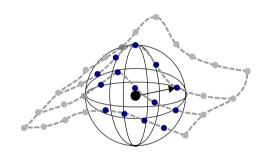






### Overview

- 1 The ExaHyPE Engine
- 2 The elastic wave equation
  - Curvilinear Meshes
  - Diffuse Interface Method
- 3 Perfectly Matched Layers
- 4 The GPR Model





## Towards an Exascale Hyperbolic PDE Engine

#### ExaHyPE Goal: a PDE "engine" (as in "game engine")

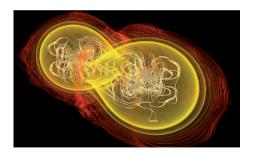
- enable medium-sized interdisciplinary research teams to realise extreme-scale simulations of grand challenges quickly
- efficiently solve hyperbolic PDE systems on Cartesian grids using higher-order ADER DG schemes with subcell limiting



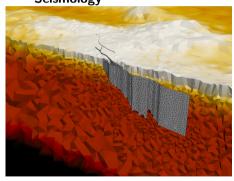
# Towards an Exascale Hyperbolic PDE Engine

primary focus on two application areas:

**Astrophysics** 



#### Seismology





## Hyperbolic PDE systems

The ExaHyPE Engine solves systems of first-order hyperbolic PDEs in the following form:

$$\mathsf{P}\frac{\partial \mathsf{Q}}{\partial t} + \nabla \cdot \mathsf{F}(\mathsf{Q}) + \sum_{i=1}^d \mathsf{B}_i(\mathsf{Q})\frac{\partial \mathsf{Q}}{\partial \mathsf{x}_i} = \mathsf{S}(\mathsf{Q}) + \sum \delta,$$

with

- material matrix P
- state vector Q
- conserved flux vector F
- non-conservative fluxes  $\sum B_i(Q) \frac{\partial Q}{\partial x_i}$
- algebraic source terms S
- lacksquare point sources  $\sum \delta$



## The ExaHyPE Engine



## Engine Architecture and Application Interface

#### **Application Layer** – user provides:

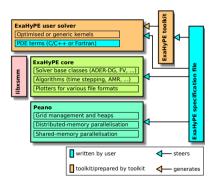
- C/Fortran code for fluxes: F(Q), G(Q), etc.
- C/Fortran code for eigenvalues:  $\lambda_1 = u + \sqrt{gh}$ , etc.

#### **ExaHyPE toolkit** generates:

- core routines, templates for application-specific functions
- kernels tailored to discretisation order, number of quantities, etc.

#### Peano framework:

- hybrid MPI+Intel TBB parallelism
- data structures for parallel AMR





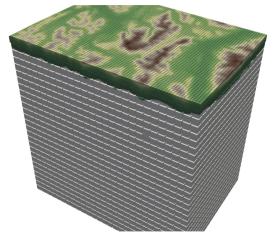
## Available Equations

The Flexibility of the Engine allows the implementation of highly different PDE systems:

- Euler Equations
- Tsunamis with the Shallow Water Equations
- Curvilinear Meshes for the Elastic Wave Equation
- Diffuse Interface Approach
- Perfectly Matching Layers for the Elastic Wave Equation (PML)
- Clouds with the Compressible Navier-Stokes Equations
- General Relativistic Magneto-Hydrodynamics
- Godunov-Peshkov-Romenski (GPR) Model
- Gravitational waves with the Einstein's Equations in Vacuum



## Elastic Wave Equation



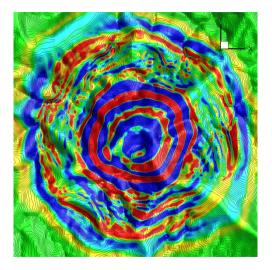
Note: This is a linear equation

$$\begin{split} \frac{\partial \boldsymbol{\sigma}}{\partial t} - \mathsf{E}(\lambda, \mu) \cdot \nabla \vec{\boldsymbol{v}} &= 0, \\ \frac{\partial \rho \boldsymbol{v}}{\partial t} - \nabla \cdot \boldsymbol{\sigma} &= 0. \end{split}$$

- $E(\lambda, \mu)$  is a matrix depending on the two Lamé constants  $\lambda$  and  $\mu$
- lacktriangledown  $\rho$  is the mass density
- $oldsymbol{\sigma} \in \mathbb{R}^d imes \mathbb{R}^d$  the stress tensor
- v is the velocity field



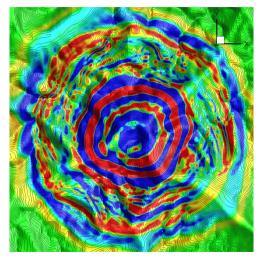
#### Motivation



- Mesh generation traditionally requires a large fraction of the time in simulations, both in terms of run time and set up time
- Meshing often requires commercial software
- Example: topography and fault profile → CAD model → mesh generator
- Goal: Require only topography and fault profile to initialize the simulation



#### Motivation



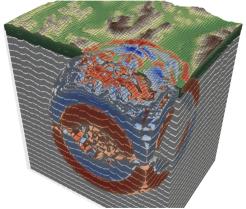
- Mesh generation traditionally requires a large fraction of the time in simulations, both in terms of run time and set up time
- Meshing often requires commercial software
- Example: topography and fault profile → CAD model → mesh generator
- Goal: Require only topography and fault profile to initialize the simulation

#### Two approaches:

Curvilinear Meshes with automated mesh generation. Diffuse Interface Approach avoiding mesh generation.



K. Duru and L. Rannabauer



- Maps each element from Cartesian mesh onto a boundary fitting curvilinear mesh.
- Requires initial (automated) Mesh generation.
- Flux and source terms are transformed with the Jacobian.
- Eigenvalues and time-step size highly depend on the norm of the transformation.

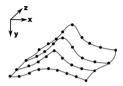


Modification to the flux

$$\frac{\partial \sigma}{\partial x} = \frac{1}{J} \left( \frac{\partial}{\partial q} (Jq_x \sigma) + \frac{\partial}{\partial r} (Jr_x \sigma) + \frac{\partial}{\partial s} (Js_x \sigma) \right)$$

$$\frac{\partial v}{\partial x} = q_x \frac{\partial v}{\partial q} + r_x \frac{\partial v}{\partial r} + s_x \frac{\partial v}{\partial s}$$





Generate surface quadrature nodes depending on topography (Interpolation with the easi<sup>1</sup> library).



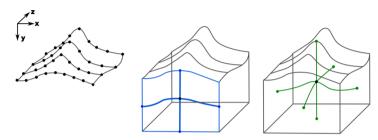
<sup>&</sup>lt;sup>1</sup>github.com/SeisSol/easi



- Generate surface quadrature nodes depending on topography (Interpolation with the easi<sup>1</sup> library).
- 2 2D curvilinear interpolation of quadrature nodes on domain boundaries with topography curves and domain edges as constraints.



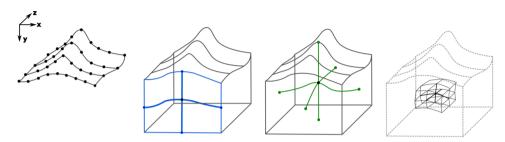
<sup>&</sup>lt;sup>1</sup>github.com/SeisSol/easi



- Generate surface quadrature nodes depending on topography (Interpolation with the easi<sup>1</sup> library).
- 2 2D curvilinear interpolation of quadrature nodes on domain boundaries with topography curves and domain edges as constraints.
- 3 3D curvilinear interpolation of all volume quadrature nodes with boundary faces and topography surface as constraints.



<sup>&</sup>lt;sup>1</sup>github.com/SeisSol/easi



- Generate surface quadrature nodes depending on topography (Interpolation with the easi<sup>1</sup> library).
- 2 2D curvilinear interpolation of quadrature nodes on domain boundaries with topography curves and domain edges as constraints.
- 3 3D curvilinear interpolation of all volume quadrature nodes with boundary faces and topography surface as constraints.
- 4 From the whole transformation of an element we can generate the Jacobian in each node.



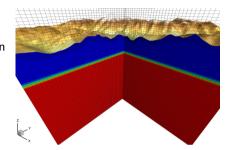
<sup>&</sup>lt;sup>1</sup>github.com/SeisSol/easi

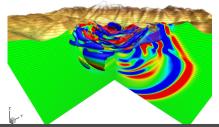
M. Tavelli and M. Dumbser

Idea: Introduce a parameter  $\alpha$ , which identifies the location of solid medium

$$Q = \begin{pmatrix} \sigma & \alpha v & \lambda & \mu & \rho & \alpha \end{pmatrix}^T,$$
  
$$\partial_t \alpha = \partial_t \lambda = \partial_t \rho = \partial_t \mu = 0$$

- At boundaries fluxes are no longer linear.
- This new approach completely avoids the problem of mesh generation
- The eigenvalues and time-step size are independent from the topography.
- Allows moving meshes

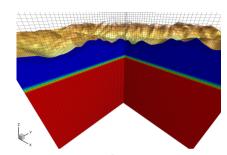


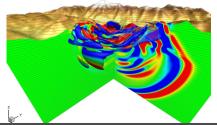


#### M. Tavelli and M. Dumbser

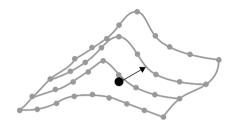
$$\begin{split} \frac{\partial \boldsymbol{\sigma}}{\partial t} - \mathsf{E}(\lambda, \mu) \cdot \frac{1}{\alpha} \nabla(\alpha \boldsymbol{v}) + \mathsf{E}(\lambda, \mu) \cdot \boldsymbol{v} \otimes \nabla \alpha &= 0, \\ \frac{\partial \alpha \boldsymbol{v}}{\partial t} - \frac{\alpha}{\rho} \nabla \cdot \boldsymbol{\sigma} - \frac{1}{\rho} \sigma \nabla \alpha &= 0, \end{split}$$

- At boundaries fluxes are no longer linear.
- ullet  $\alpha$  introduces a *discontinuity* at the topography which needs to be limited.
- This new approach completely avoids the problem of mesh generation
- The eigenvalues and time-step size are independent from the topography.





Mesh initialization reduces to finding  $\alpha$ . But how do we find  $\alpha$ ?





Mesh initialization reduces to finding  $\alpha$ .

But how do we find  $\alpha$ ?

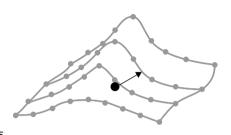
For the free-surface boundary condition we require:

$$\nabla \alpha(t) \stackrel{!}{=} \vec{n_t},$$

where t is an arbitrary point on the topography and  $\vec{n_t}$  is normal.

Interpolation of the surface ends up with a non-linear optimisation problem:

$$\alpha(\vec{x}) = f(d(\vec{x}))$$



Mesh initialization reduces to finding  $\alpha$ .

But how do we find  $\alpha$ ?

For the free-surface boundary condition we require:

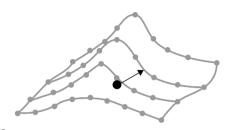
$$\nabla \alpha(t) \stackrel{!}{=} \vec{n_t},$$

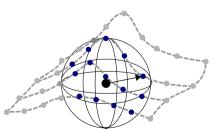
where t is an arbitrary point on the topography and  $\vec{n_t}$  is normal.

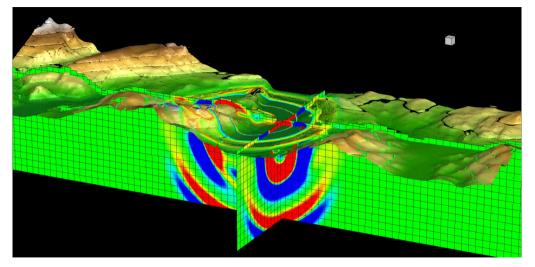
Interpolation of the surface ends up with a non-linear optimisation problem:

$$\alpha(\vec{x}) = f(d(\vec{x}))$$

ightarrow Approximation by only considering samples of the topography.





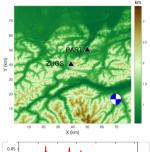


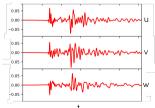
Uses open access topography data by Earth Observation Center (EOC), project Copernicus



## Studies of the Alpine area near Zugspitze

#### K. Duru and L. Rannabauer





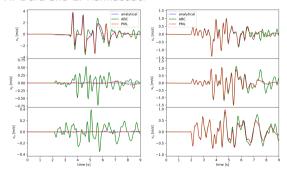
Goal: Track topographic effects on wave scattering.

- lacktriangle Time-steps of the DIM are larger by a factor of pprox 16 to 64
- Implies a point at which the additional cost for the DIM is evened out by requiring less time-steps.
- Question: What accuracy do we get for each method?



## Perfectly Matched Layers

#### K. Duru and L. Rannabauer



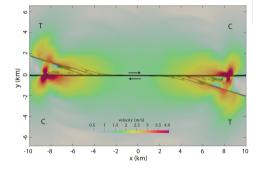
Goal: Remove reflections emanating from the not perfectly absorbing boundary of the computational domain.

- Based on complex coordinate stretching.
- Requires extension of the numerical DG fluxes, inter-element and boundary procedures.
- Allow us reduce the the computational domain and only simulate the area of interest.



## GPR: Godunov, Peshkov and Romenski model

AA. Gabriel, D. Li



Goal: Numerical modeling of continuous damage and freely evolving dynamic rupture.

- Based on the Godunov Peshkov Romenski, a unified framework for arbitrary rheological responses of material.
- Used for nonlinear elasto-plasticity, material damage and of viscous Newtonian flows with phase transition between solid and liquid phases.
- Fault geometry and secondary cracks are part of the PDE.
- A scalar function  $\xi \in [0,1]$  indicates the local level of material damage.



## Challenges for Engine Development:

- lots of functionality to be tested, high effort for software integration.
- "multiple targets" for parallelisation and optimisation.
- equal number of cells does not lead to equal execution time.

#### Thus,

- in ExaHyPE we use a task-based paradigm for unpredictable work loads.
- tasks processing is build on a produce-consumer pattern. We assume volume operations are significantly more expensive than boundary operations (Prediction vs Riemann-solver).
- strategy for AMR: different granularity of AMR required by applications
- communication-avoiding traversal scheme that minimizes data transfer.
- code generation tailored to required PDE kernels.



## Access to the Engine:

- snapshots of the engine, documentation, etc www.exahype.org
- webpage that comprises statistics, galleries, publication lists, etc.
   exahype.eu



#### References

- [1] The ExaHyPE consortium. The ExaHyPE Guidebook. www.exahype.eu
- [2] Reinarz et al. ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems. Computer Physics Communications. 2020.
   [3] Tanking to Anni and Michael Michael and Michael and
- [3] Tavelli et al. A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave equations with complex topography. Journal of Computational Physics 386.
- [4] Duru et al. A stable discontinuous Galerkin method for the perfectly matched layer for elastodynamics in first order form. Submitted 2019.

